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Abstract—The rise of on-device inference of large lan-
guage models (LLMs) is rapidly escalating the demand for
memory-intensive operations on edge devices. While DRAM-
based processing-in-memory (PIM) is a promising solution for
overcoming the memory wall, edge devices require PIM to
function both as a compute unit and a memory device due to their
limited memory capacity. Such PIM-enabled memory complicates
the partition and placement of a tensor into DRAM banks in a
PIM-operable manner. Notably, we highlight that LLM weights
need to be accessible by both PIM and system-on-chip (SoC)
processors, as the same weights are used for both SoC-favorable
GEMM and PIM-favorable GEMV operations. This necessitates
different memory mappings for PIM and SoC processors, leading
to potential re-layout costs when switching between the two. To
address this challenge, we propose FACIL, a flexible DRAM
address mapping solution that efficiently places tensors in DRAM
for PIM operations while allowing SoC processors to access the
same data using contiguous virtual addresses. FACIL consists of
(i) a memory controller that assigns different DRAM address
mapping to the page offset bits of each huge page and (ii) a
user-level library that determines the appropriate DRAM address
mapping. We demonstrate that enabling re-layout-free access of
both PIM and SoC processor benefits LLM inference on various
on-device LLM tasks, including short conversation and code
autocompletion, reducing the time-to-first-token by 2.37× and
2.63×, respectively, over the SoC-PIM baseline.

I. INTRODUCTION

The demand for on-device large language models (LLMs)
is rapidly growing because they improve user experience by
processing data locally, allowing instant responses in real-time
applications such as voice assistants and predictive text, even
without a stable internet connection. This local processing
also enhances privacy and security, as sensitive data remains
on the device, mitigating potential risks associated with data
transmission to external servers. The inclusion of small LLM
inference (GPT-J 6B [82]) in the recent version of the MLPerf
Inference benchmark [68] and the release of on-device gener-
ative AI tools by major IT vendors [3], [72] are just a few of
the many examples that underscore this trend.

On-device LLM inference, which typically processes a sin-
gle query from a single user at a time, is primarily composed of
general matrix-vector multiplications (GEMV) that are highly
memory-bound. Processing-in-memory (PIM) is a promising
solution to overcome the memory bandwidth wall. Among the
various PIM technologies, those that leverage DRAM bank-
level parallelism by placing a compute unit near-bank are
emerging as promising candidates for integration into real-

world commodity platforms. Notably, all recently introduced
production-grade PIM devices adhere to this paradigm [15],
[39], [40], [42], [46].

However, adopting near-bank PIM for on-device LLM in-
ference raises a critical question: how can we integrate PIM
within the existing memory system? In order to maximize the
computational throughput of PIM, weight matrices need to be
stored using a specialized data mapping scheme that differs
from the conventional ones used by existing memory systems.
While supporting such a specialized mapping is relatively
straightforward when using a PIM processor as a stand-alone
accelerator with a dedicated memory system [28], [41], [74],
this approach is impractical for resource-constrained, SoC-
based portable devices like mobile phones and laptops. For
these platforms, the PIM processor must be integrated into
the existing memory system, handling memory requests from
other concurrent tasks.

Two specific challenges need to be addressed to realize such
integration. First, we must be able to store weight matrices
using a PIM-optimized data mapping scheme, which differs
from the conventional mapping used by existing memory
controllers. Second, SoC processors (CPUs, GPUs, and NPUs)
must be able to access the data stored in a PIM-optimized
mapping. Such data sharing is crucial because LLM inference
involves not only GEMV operations but also GEMM opera-
tions, for which PIM processing is not efficient due to their
compute-intensive characteristics (i.e., high arithmetic inten-
sity). Ideally, this should be accomplished while maintaining
a consistent virtual memory view to leverage existing highly
optimized GEMM kernels without extensive modifications.
While the first challenge can be addressed through specialized
software that allocates memory using huge pages and adjusts
the data layout within a page to achieve a PIM-optimized
mapping, the second challenge remains unresolved.

To address this unresolved issue, we propose FACIL, a
comprehensive solution that provides flexible DRAM address
mapping for SoC-PIM cooperative inference of LLM in a
programmer-transparent manner. FACIL holistically augments
the memory system, including the paging mechanism in the
operating system and the memory controller, to support both
conventional and multiple PIM-optimized mapping schemes
natively. When allocating memory for data used in PIM com-
putations, FACIL automatically selects the optimal mapping
scheme and stores the data accordingly. With FACIL, SoC



processors can access data stored in a PIM-optimized mapping
without any changes to the application, as it seamlessly
translates the addresses according to the appropriate mapping
scheme. With minimal modifications to the operating system
and hardware, FACIL significantly improves the responsive-
ness of on-device LLM inference, which is measured by time-
to-first-token (TTFT), compared to the baseline system. This
improvement is achieved by eliminating the need to re-layout
weight matrices for each GEMM operation executed on SoC
processors. According to our evaluation of various platforms,
FACIL reduces TTFT by 2.37× on a conversation dataset and
by 2.63× on a code autocompletion dataset.

The main contributions of our work are as follows:
• We identify a critical challenge in achieving efficient

data sharing between PIM and SoC processors, which is
essential for enhancing the responsiveness of on-device
LLM inference using PIM.

• We propose FACIL, a solution that enables efficient,
programmer-transparent data sharing between PIM and
SoC processors by flexibly selecting the optimal address
mapping scheme for PIM computation at huge page
granularity.

• We design a non-intrusive augmentation to the paging
mechanism and memory controller architecture to na-
tively support multiple address mapping schemes.

• We demonstrate the effectiveness of FACIL across four
different platforms on real-world datasets, showcasing
significant improvements in responsiveness and inference
latency.

II. BACKGROUND

A. On-device LLM Inference
Case for On-device LLM. Performing LLM inference on-
device offers significant advantages over relying on cloud
servers [16], [44], [51], [69]. First, it enables low-latency
responses by eliminating the need for data transfer between
the device and the server through a network. This results in
quicker responses and a better user experience. Second, on-
device inference ensures enhanced data privacy and security,
as sensitive and confidential user data remains on the device,
reducing the risk of data breaches or leaks. Additional benefits
include improved personalization and the ability to function
offline. The importance of on-device LLM is expected to
grow, considering its diverse applications. Major IT vendors
have recently introduced LLM services that run on personal
portable devices such as mobile phones and laptops. Repre-
sentative examples include Samsung Galaxy AI [72], Apple
Intelligence [3], and Android AI Core [2].
LLM Architecture. Modern LLMs use a common architec-
ture consisting of multiple layers of Transformer [81] decoder
blocks, as illustrated in Figure 1(a). Each Transformer decoder
block includes several linear operations, attention mechanisms,
and additional components such as normalization and posi-
tional embeddings. Among these, the linear operations com-
prise the majority of the model parameters and are typically the
most demanding in terms of both computation and memory.
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Fig. 1: LLM architecture and inference
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Fig. 2: Profiling results of decode phase in LLM inference on
Jetson AGX Orin using Llama3-8B

LLM Inference. Figure 1(b) illustrates the process of LLM
inference. LLM model inference is composed of two phases:
prefill (summarization) and decode (generation) phase. For
each query, the process starts with the prefill phase, where
multiple tokens from the input sequence (e.g., ’thank’, ’you’,
and ’for’ in the figure) are processed simultaneously to gen-
erate a single output token (e.g., ’your’ in the figure). After
the prefill phase, this output token is fed back into the model
as input, leading to the generation of the next output token.
This iterative process continues until the entire sequence is
completed, known as the decode phase. Due to the auto-
regressive nature of the decode phase, which processes only
one token at a time, the linear operations involved in this phase
are GEMV, as opposed to being GEMM in the prefill phase.
While the prefill phase involves only a single iteration for
each query, the decode phase must be iterated tens, if not
hundreds or thousands, of times, corresponding to the output
sequence length for each query. Therefore, the decode phase
often becomes the bottleneck.
LLM Workload Profiling. Figure 2(a) shows the execution
time breakdown of the decode phase of generating 64 tokens
on the NVIDIA Jetson AGX Orin 64GB with Llama3-8B
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Fig. 3: Potential LLM inference speedup with GEMV oper-
ations offloaded to AiM-style PIM processor on Jetson AGX
Orin using Llama3-8B

model. As anticipated, more than 90% of the execution time is
dedicated to performing linear operations, specifically GEMV,
which are highly memory-bound. Figure 2(b) illustrates the
compute and memory bandwidth utilization when executing
GEMV across the four dimensions employed in the Llama3-
8B model. The compute utilization remains very low, below
1%, while the memory bandwidth is heavily utilized.

B. PIM for LLM Inference

Processing-in-memory (PIM), an idea of bringing compute
closer to memory, is a powerful solution for accelerating
memory-bound operations like GEMV. Among the various
classes of DRAM PIM technology based on the location of
the processing unit [18], [56], which include in-memory [17],
[75], [76], [84], near-bank [21], [27], [40], [45], [47], near-
DIMM [7], [36], [37], [43], [66], and buffer die [1], [19], this
paper focuses on near-bank DRAM PIMs [21], [27], [40], [45],
[47]. This class is noteworthy as it has demonstrated practical
feasibility through real-world taped-out prototypes [40], [42],
[46] and even commercial products [15].

Figure 3 demonstrates the potential speedup achievable by
offloading GEMV operations during the decode phase to AiM-
style PIM processor on a Jetson AGX Orin 64GB, using the
Llama3-8B model. The details of the PIM configuration are
described in Section VI-A. The scenario assumes both the
input and output sequence lengths to be 64. By leveraging the
significantly higher internal bandwidth provided by PIM, the
memory bandwidth bottlenecks associated with the extensive
number of GEMV operations are substantially alleviated,
leading to a significant end-to-end speedup. We underscore the
benefit of integrating PIM by comparing it with a hypothetical,
ideal NPU with infinite FLOPS and 100% utilization of the
peak memory bandwidth. Despite such optimal assumptions,
PIM still achieves 3.32× speedup over the ideal NPU, whose
speedup is bounded by the peak memory bandwidth.

C. Data Mapping Problem on PIM Architecture

To fully exploit the internal bank-level parallelism, thereby
maximizing the throughput of PIM, a specialized, non-
conventional data mapping strategy is essential. Figure 4
illustrates how a matrix should be placed on DRAM for PIM
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Fig. 4: Illustration of matrix placement on near-bank PIM

to efficiently perform GEMV. How a matrix is mapped to
DRAM banks can be expressed using the notion of chunks and
tiles, terms similarly used by prior works [27], [74]. A chunk
is the basic unit of computation performed by a single PIM
processing unit (PU). The dimension of a chunk is statically
determined by the PU architecture, specifically by the tuple
of (output register size, input register size). For example,
given a data precision of FP/BF16, SK Hynix’s Accelerator-in-
Memory (AiM) [46] has a chunk dimension of (1, 1024). This
is because an input register holds a subset the size of a DRAM
row (e.g., 2KB for GDDR6) of the input vector, while an
output register holds one element of the output vector. Instead,
Samsung’s HBM-PIM [42], [73] has a chunk dimension of (8,
128)1, since it has two sets of 8 general registers, one for input
and the other for output, where the size of a register equals
the DRAM transfer size (e.g., 32B for HBM2).

Tile is a collection of chunks that are processed by all banks
of all channels at the same time. The tile is usually composed
as a row-wise concatenation of chunks, as the banks within a
rank operate in a lock-step, all-bank manner, processing the
same command (i.e., accessing the same location within each
bank). Aligning the chunks row-wise ensures that the PUs
access the same column index of the weight matrix, easing
the broadcast [73] or sharing [27] of the input vector.

The optimal placement of a weight matrix for GEMV oper-
ation can be summarized as follows. First, the elements within
a chunk must be placed contiguously (i.e., at the same DRAM

1A set of 8 general registers can, in theory, hold 128 elements of an output
vector. However, in practice, each register holds 16 partial sums corresponding
to a single element of an output vector due to the lack of a reduction unit [29],
[73]. Thus, the chunk dimension is (8, 128), as opposed to being (128, 128).



row) to minimize the row buffer conflict. Second, the banks of
a single channel must store different matrix rows in unison,
enabling lock-step, all-bank operation of PIM. Finally, it is
favorable for a tile to be composed of row-wise concatenation
of chunks, assigning each row of a matrix in its entirety to a
single bank. This prevents the overhead of reducing the partial
sums scattered across banks. One can easily see that the PIM-
optimized mapping differs from conventional DRAM address
mapping in that it requires a certain amount of data to be
contiguously placed within the same bank, and requires data
alignment within the banks that act in unison.

III. GOAL: RESOURCE-EFFICIENT PIM INTEGRATION FOR
ON-DEVICE LLM ACCELERATION

The integration of PIM into portable devices like mobile
phones and laptops must be implemented in a resource-
efficient manner. These devices typically utilize a system-
on-chip (SoC) design, and it is essential to integrate PIM
directly into the existing SoC platform rather than as a separate
accelerator connected via an external interface. Having a
separate memory module dedicated solely to PIM processing
is impractical for these devices. Assuming this resource-
efficient approach, several challenges arise in supporting a
PIM-optimized data mapping within the existing memory
system. We are constrained to utilize the existing memory
controller, which only supports conventional data mapping
schemes, even for storing and accessing data for PIM com-
putation. Specifically, the two key challenges are: 1) How can
we store weight matrices using a PIM-optimized data mapping
scheme? 2) How can we enable efficient access to these weight
matrices, stored in a PIM-optimized manner, by both PIM and
SoC processors (CPU, GPU, NPU)?
Storing Data with PIM-optimized Mapping Scheme. The
first challenge, which is fundamental for making PIM itself
feasible, can be addressed by using huge pages [29], [61],
[62]. This solution makes a reasonable assumption that the
address mapping scheme of the memory controller is made
available to those who write software responsible for arranging
weight matrices for PIM. Assuming a 2MB huge page, all
the necessary bits for interleaving (bank, channel, rank bits)
are usually placed within the 21 least significant bits (LSBs),
which correspond to the page offset. This is because most
DRAM address mapping schemes typically place row bits
to the most significant bits (MSBs) [67]. This is particularly
true for edge devices like mobile phones and laptops, whose
memory systems usually have a limited number of channels
and ranks. In such cases, software that tweaks data ordering at
the cache line size granularity within each page can store data
following any arbitrary interleaving scheme, including PIM-
optimized ones.
Data Sharing between PIM and SoC processors. The second
challenge, which is rather specific for the case of accelerating
LLM with PIM, meanwhile, has not yet been adequately
addressed. While PIM processors excel at accelerating GEMV
operations, they are not well-suited for GEMM operations,
which have much higher arithmetic intensity. For optimal
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execution of LLM inference, not only the PIM processor
but also the SoC processors (CPU, GPU, NPU), which have
greater compute capabilities, need to access weight matrices
to perform GEMM operations during the prefill phase. This
necessitates that SoC processors can access data stored in a
PIM-optimized format, which is not supported by the existing
memory systems. In particular, widely used BLAS libraries
such as Intel oneMKL [30] and NVIDIA cuBLAS [57] view
a matrix in virtual address space as a one dimensional array
stored in either row-major or column-major order. Breaking
this abstraction hinders the usage of highly optimized imple-
mentation of kernels provided by the libraries, costing either
the remapping of a matrix back into row-/column-major order
or implementing handcrafted kernels customized for the layout
used.

There are two possible ways to work around this issue. One
approach is to maintain two copies of the weight matrices: one
in a conventional mapping scheme and the other in a PIM-
optimized mapping scheme (Figure 5(a)). This method takes
advantage of the performance benefits of both mappings. How-
ever, it is impractical for resource-constrained SoC platforms
to incur a 2× increase in memory usage.

A more practical approach is to keep the weight matrices in
a PIM-optimized format during the decode phase and, for the
prefill phase, to re-layout the matrices to a conventional map-
ping on demand2, performing GEMM operations sequentially
(Figure 5(b)). This approach would only slightly increase peak
memory usage, comparable to the size of the single largest
weight matrix. However, the overhead of re-layout slows down

2An alternative to such on-demand approach is to re-layout all weight
matrices at the end of each phase. However, this all-at-once approach incurs
additional re-layout overhead when transitioning from prefill to decode phase.
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the prefill phase, leading to an increased time-to-first-token
(TTFT). TTFT is a critical metric that significantly impacts
user experience in interactive applications like chatbots, voice
assistants, and autocompletion. In such applications, TTFT
significantly impacts user-perceived latency more than time-to-
last-token (TTLT) [22], [26], the overall inference time. This is
because successive output tokens are generated while the user
is reading or listening to the previous output. Figure 6 shows
the increase in TTFT due to re-layout overhead on the Jetson
AGX Orin using the Llama3-8B model with varying input
sequence lengths. The TTFT increases by approximately three
times, from about 100 ms to 300 ms. This increase is critical
because users perceive a system as reacting instantaneously
only when the response time is shorter than 100 ms [9]. In fact,
to achieve a human-like response time for a voice assistant,
which is a popular application of LLMs, it is claimed that the
TTFT should be at most around 250 ms [63], [79].

Thus, in this paper, we propose a method that enables
SoC processors to efficiently access data stored using a
PIM-optimized mapping scheme with minimal hardware and
software modifications. By providing user-transparent data
sharing between PIM processors and SoC processors, our
proposal does not incur an increase in memory footprint or
cause a slowdown due to re-layout of tensors. Figure 5(c)
illustrates the concept of our proposal. Section IV describes
the mechanism of our approach, and Section V provides
implementation details.

IV. FACIL: FLEXIBLE ADDRESS MAPPING FOR SOC-PIM
COOPERATIVE INFERENCE OF LLM

A. Overview

To provide re-layout-free data sharing between the PIM
processor and SoC processors, FACIL augments the memory
system to support multiple PA-to-DA (Physical Address-to-
DRAM Address) mapping schemes, including both conven-
tional and PIM-optimized ones. Specifically, FACIL intro-
duces a specialized memory allocation mechanism called
pimalloc, which allocates memory regions following a
PIM-optimized mapping scheme. Additionally, FACIL allows
SoC processors to access these memory regions using only
virtual addresses, in a manner that is software-transparent.
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Fig. 7: High level overview of FACIL

Memory Allocation with pimalloc. Figure 7(a) illustrates
the operation of pimalloc, a specialized memory alloca-
tion mechanism designed to support PIM-optimized mapping
schemes. ➊ Using this interface, a user provides the di-
mensions and datatype of the weight matrix to a mapping
selector. The mapping selector is a user-level software that
determines the optimal PA-to-DA mapping based on the matrix
configuration, as well as the memory and PIM configuration.
➋ The matrix configuration and the selected MapID are then
passed to the OS memory allocator, ➌ which allocates huge
pages and records both the physical addresses and the MapID
of the allocated pages in the page table. ➍ After these steps,
the virtual address is returned to the user.
Programmer-transparent Access to pimalloced Region.
Figure 7(b) and (c) illustrate how SoC processors store
and read data to and from memory regions allocated by
pimalloc, respectively. From the programmer’s perspective,
accessing a pimalloc memory region is identical to access-
ing a normally allocated memory region. For storing data,
programmers simply pass the virtual memory address and data
to the memory system. For loading data, they only need to
pass the virtual memory address. The difference lies between
the page table entry and the memory controller. In FACIL,
the page table entry contains both physical addresses and
MapIDs. Both pieces of information are passed to the memory
controller (also along with the data in the case of store). The
memory controller, which is augmented with an enhanced
address translation module supporting both conventional and
PIM-optimized PA-to-DA mapping schemes, performs PA-
to-DA mapping according to the given MapID. The data is
then stored to or loaded from memory following the selected
mapping scheme.

B. Formulation of DRAM Address Mapping

We first explain the generic PA-to-DA mapping that satisfies
both PIM-optimized placement and row-major layout, and how
it can be represented in the form of MapID. Fig. 8 illustrates
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the following explanation. Note that the figure assumes a
single rank memory system (i.e., no DRAM rank bits) for
conciseness while FACIL is readily applicable to systems
with multiple ranks. Recall from Section II-C, that a chunk
must be placed contiguously within a bank for efficient reuse
of input and output registers. ➊➀ Preserving the row-major
layout, the PA-to-DA mapping first needs to map a row
of a chunk to the same DRAM row. Assuming LPDDR5
DRAM with 32B transfer size and 2KB DRAM row, AiM
will have log2(1024 ∗ 2/32)=6 DRAM column bits placed in
front of 5 DRAM offset bits. Likewise, in case of HBM-PIM,
log2(128 ∗ 2/32)=3 column bits will be placed in front of the
DRAM offset bits.

Also recall that it is ideal for a single matrix row to be
entirely mapped to a single bank, minimizing the overhead
of reducing the partial sums scattered across different banks.
➋➁ Therefore, it is desirable for a single matrix row to be
mapped to a single bank. Therefore, log2(matrix column /
chunk column) DRAM row bits must be placed next.

In case of AiM, whose chunk row dimension is 1, the next
matrix row should be mapped to different PUs. ➌ Thus, PU-
changing bits, which we define as a concatenation of bank,
rank, channel bits (i.e., bits that affect the interleaving of
banks), should be placed after. ➂ On other hand, for HBM-
PIM, whose chunk row dimension is 8, 3 column bits should
first be prepended, ensuring that the elements within a chunk
is placed in the same DRAM row. Only then, will the PU-
changing bits be placed. The remaining row bits will fill up
the remaining most-significant bits (MSBs) of the page offset.

1 int select_mapping(matrix_config,
2 memory_config,
3 pim_config) {
4
5 /* Get matrix, memory, PIM configurations */
6 // Matrix
7 matrix_col = matrix_config->dim[1]
8 dtype = matrix_config->dtype
9 row_size = pow(2, ceil(log2(matrix_col))) *
10 sizeof(dtype)
11 // Memory
12 hpage_size = memory_config->hpage_size
13 n_ch = memory_config->n_ch
14 n_rank = memory_config->n_rank
15 n_bank = memory_config->n_bank
16 total_bank_count = n_ch * n_rank * n_bank
17 // PIM
18 chunk_col = pim_config->chunk_col
19
20 /* Determine if partitioning is required */
21 memory_per_bank = hpage_size / total_bank_count
22 need_partition = memory_per_bank < row_size
23
24 /* Calculate MapID */
25 map_id = need_partition ?
26 log2(memory_per_bank) : log2(row_size)
27 map_id -= log2(chunk_col)
28
29 return map_id
30 }

Fig. 9: Mapping selection algorithm

Given a memory and PIM configuration, which are fixed at
the design time of the SoC, the PA-to-DA mapping is deter-
mined by the column dimension of the matrix, determining the
position of the PU-changing bits. In case of AiM-style PIM,
we define the MapID as the number of bits between the PU-
changing bits and the chunk column bits, while the MapID for
HBM-PIM-style PIM represents the number of bits between
the chunk row bits and the chunk column bits.

While there exist numerous possible PA-to-DA mappings
applicable to the page offset bits of a huge page, such
formulation of mapping limits the number of mappings to the
number of positions where the PU-changing bits can be placed
between the most-significant bit (MSB) of the page offset and
the chunk column bits. When given the DRAM specifications,
the theoretical maximum number of MapIDs can be calculated
using the following formula:

max(MapID) = log2
OS huge page size

total bank count ∗ DRAM transfer size
Based on this formula, the maximum MapID value for

LPDDR5 DRAM in the worst case is 13, assuming a huge
page size of 2MB and a DRAM transfer size of 32B.
A single channel/rank memory system with 8-bank mode
DRAM minimizes the denominator of the formula (i.e.,
log2(2MB/(8*32B))=13). The small number of MapIDs allows
us to minimize modifications to both the operating system and
the memory controller design, as later discussed in Section V.

C. Selection of DRAM Address Mapping

Figure 9 describes how FACIL selects the PA-to-DA map-
ping upon receiving pimalloc() request from a user. While
the pseudocode assumes AiM-style PIM, the algorithm is
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Fig. 10: PA-to-DA mapping for a matrix with large rows

also applicable to HBM-PIM-style architectures. First, FACIL
retrieves the following three information necessary for deter-
mining the MapID (Line 5-18): 1) weight matrix configuration
(dimension and data type), 2) memory system configuration
(number of channels and ranks), and 3) PIM configuration
(chunk dimension). Note that the memory system information
can easily be retrieved through interfaces already provided by
the operating system such as desktop management interface.
Likewise, the chunk dimension can easily be inferred given
the high-level architecture of PIM and the type of DRAM.

Then, FACIL checks if an entire matrix row can be mapped
to a single bank, or if column-wise partitioning of the matrix
is required (Line 20-22). If partitioning is not required, the
MapID is determined as the number of bits as described in
Section IV-B. On the other hand, if a matrix row is too large
to be mapped to a single PU within a single huge page, FACIL
places the PU-changing bits to the MSB of the page offset
(Line 24-27). Figure 10 shows such an example, where the
size of a matrix row vector (e.g., 128KB) is greater than
the memory size a huge page can allocate to each PU (e.g.,
64KB). FACIL places the PU-changing bits to the MSB of
the page offset (i.e., [20:16]). In this case, the matrix row will
be mapped to different PUs of a different channel. After PIM
operation, the two partial sums of the output vector residing
in each channel will be reduced by the SoC processor.

V. IMPLEMENTATION

Implementing FACIL requires modifications to the memory
system in addition to the introduction of a mapping selector,
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which is a user-level method. Specifically, FACIL makes mod-
ifications to OS paging mechanism and memory controller.
The page table entry should be augmented to store the MapID
information for each page and the memory allocator must be
able to pass the MapID along with the physical page number
to the memory controller. In addition, the memory controller
should be able to perform PA-to-DA mapping flexibly based
on the given MapID.

A. OS Paging Mechanism Modifications

We extend the mmap() system call to optionally receive an
additional argument, which is MapID. This MapID is recorded
in page table. For recording MapID information, FACIL uses
unused bits in the page table entry, avoiding the need for
additional memory space. This is feasible because the number
of possible PA-to-DA mappings is limited, as discussed in
Section IV. Even in the worst case, where 14 additional PA-
to-DA mappings must be supported, only four bits are required
to represent them. Meanwhile, when using huge pages, there
are plenty of unused bits since huge pages require fewer bits
for the physical page number than regular pages [64]. For
instance, with 4KB regular pages and 2MB huge pages, there
are 9 unused bits available (21− 12 = 9), which is sufficient
to store the MapID. Figure 11 illustrates this space-efficient
partial repurpose of the page table entry. Since a translation
lookaside buffer (TLB) entry supports both regular and huge
pages, the MapID stored in the unused bits that are available
when using huge pages can safely be stored in the TLB entry
without requiring any TLB modification.



Free Memory (relative to model size)
2.5× 2.0× 1.5× 1.1×

FMFI

0.0−0.1 10.26s
(1.17×)

10.24s
(1.16×)

10.24s
(1.16×)

10.55s
(1.20×)

0.4−0.5 10.25s
(1.16×)

10.23s
(1.16×)

11.33s
(1.29×)

12.44s
(1.41×)

0.7−0.8 14.48s
(1.65×)

15.11s
(1.72×)

15.76s
(1.79×)

16.72s
(1.90×)

TABLE I: Load time of LLM weights when using huge
pages under various degrees of memory utilization and frag-
mentation. The values in parentheses represent the load time
normalized to that of baseline that does not use huge pages.

B. Memory Controller Augmentations

FACIL requires only local modifications to the memory
controller. Specifically, among the multiple layers of a typical
memory controller architecture [34], [54], [70], FACIL neces-
sitates changes to the frontend, which handles the translation
of physical addresses to DRAM addresses. In addition to the
default PA-to-DA mapping used by the SoC, the memory
controller needs to support a small number of additional
mappings. This can be implemented with an array of N-
to-1 multiplexers, where N is the number of mappings to
support. Specifically, five multiplexers are necessary to select
the appropriate channel, rank, bank, column, and row bits from
the physical address. Figure 12 illustrates this modification,
assuming an example where the memory controller needs
to support four mappings (three for PIM and one conven-
tional). A simple combinational logic addition to the memory
controller, without introducing any memory components, is
sufficient to support FACIL.

C. Discussion

Overhead of Huge Page Allocation. We perform an ex-
periment on Jetson AGX Orin 64GB equipped with 1TB of
Samsung 980 Pro NVMe SSD to measure the overhead of
huge page allocation on the load time of model weights. We
select Llama3-8B in FP16 as the target LLM and experiment
on various degrees of memory utilization and fragmentation.
We represent memory utilization as the free memory size
relative to the model size (i.e., 16.2GB), and represent memory
fragmentation using the free memory fragmentation index
(FMFI) [23]. An FMFI value is in the range of 0 to 1, with a
higher value representing a higher degree of memory fragmen-
tation. Table I presents the model load time, where the values
in parentheses are normalized to the baseline load time that
does not use huge pages. Even in the most unfavorable case,
the model load time increases only by 1.90×. Considering that
the model load time is a one-time cost that is quickly amortized
as multiple rounds of inference are performed on the same
model, the overhead of huge page allocation is negligible.
Remaining Challenges. While FACIL aims for the efficient,
programmer-transparent data sharing between SoC and PIM
processors, challenges remain in fulfilling the integration of
PIM into SoC platforms. In particular, the scheduling of PIM
and non-PIM memory requests should be carefully handled to

minimize the impact on normal processes run on the SoC. We
envision that the ideas of prior works that propose efficient
memory scheduling methods for CPU-GPU heterogeneous
systems with shared memory [8], [85] can be expanded for
PIM. An alternative could be the adoption of dual row buffers,
as proposed by NeuPIMs [28], such that normal and PIM
memory accesses use separate row buffers to prevent DRAM
row buffer conflicts.

VI. EVALUATION

A. Methodology

Target Platforms and LLMs. We use four SoC-based plat-
forms: NVIDIA Jetson AGX Orin 64GB [60], Apple Macbook
Pro [5], Lenovo IdeaPad Slim 5 [48], and Apple iPhone 15
Pro [4]. For each device, we adopt a highly optimized frame-
work to evaluate the execution time of LLMs. Specifically,
we use the TinyChatEngine library [51] for Jetson, MLX [25]
for MacBook, Intel NPU Acceleration Library [32] for the
IdeaPad, and MLX Swift [25] for iPhone. Among the SoC
processors, we select the GPU for Jetson, MacBook, and
iPhone as well as the NPU for IdeaPad, to serve as the
primary processors for executing LLM operations that are
not offloaded to PIM processors. These processors are chosen
since they demonstrate the best performance for handling LLM
tasks on each platform. We use Llama3-8B [53] for Jetson
and Macbook, OPT-6.7B [87] for IdeaPad, and Phi-1.5 [50]
for iPhone. We use FP16 precision for all cases. Table II
summarizes the specifications of the evaluated platforms and
models. Note that some of the values in Table II are retrieved
from third-party sources [13], [14], [71], [77], [78], due to
the absence of such information in the official documentations
provided by the manufacturers [6], [31], [33], [58], [59].
PIM Simulation. For each of the device, we assume that
the memory is augmented with an AiM-style PIM, where 16
banks in each rank shares an input register (i.e., global buffer)
the size of a DRAM row (2KB). We also assume that each
channel is composed of two ranks. We use an open source
PIM simulator [28], which is based on DRAMsim [49], to
measure the performance of PIM. While keeping the core
components of the simulator intact, we modified the simulator
to support LPDDR5/X memory. We adopt the LPDDR5/X
timing parameters from the JEDEC standard [35].
FACIL. We measure the latency of FACIL as the sum of
the conservatively scaled GEMM time measured on the real
device and the GEMV time simulated on the PIM simulator.
Since GEMM operations are performed on a PIM-optimized
layout in the case of FACIL, rather than using the conven-
tional address mapping, there can be potential side effects on
performance. To account for these side effects, we measure
the performance impact of the mapping change on GEMM
operations using GPGPU-Sim [38] and ONNXim [24], each
modeling GPU (Jetson, Macbook, iPhone) and NPU (IdeaPad),
respectively. We configure each XPU based on publicly known
information, mainly number of cores and peak FLOPS. We
evaluate with different weight matrix dimensions and prefill
lengths. Table III summarizes the results. We conservatively



Primary SoC Processor Memory LLM

Platform Processor Name Type Peak Throughput
(TFLOPS, FP16)

DRAM
Type

Data Rate
(Mbps)

Bus Width
(bits)

Capacity
(GB)

Peak BW
(GB/s) Model Name Framework/

Library Precision

NVIDIA Jetson
AGX Orin 64GB

Ampere
CUDA/Tensor Cores GPU 42.5 LPDDR5 6400 256 64 204.8 Llama3-8B TinyChatEngine FP16

Apple
Macbook Pro M3 Max GPU 28.4 LPDDR5 6400 512 64 409.6 Llama3-8B MLX FP16

Lenovo
IdeaPad Slim 5

Intel Core
Ultra 7 155H NPU 5.6 LPDDR5X 7467 64 32 59.7 OPT-6.7B Intel NPU

Library FP16

Apple
iPhone 15 Pro A17 Pro GPU 4.29 LPDDR5 6400 64 8 51.2 Phi-1.5 MLX Swift FP16

TABLE II: Specifications of the evaluated platforms and models

Jetson Orin (GPU) Macbook Pro (GPU)
Prefill Length 4 16 64 4 16 64

Q/O Proj. 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%
K/V Proj. 0.1% 0.3% 0.2% 0.0% 0.1% 0.1%

FC1 0.9% 1.1% 2.1% 0.0% 0.0% 0.0%
FC2 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

IdeaPad Slim 5 (NPU) iPhone 15 Pro (GPU)
Prefill Length 4 16 64 4 16 64
Q/K/V/O Proj. 0.8% 0.9% 0.9% 0.5% 0.4% 1.6%

FC1 0.9% 1.1% 0.8% 0.0% 0.0% 0.0%
FC2 0.2% 0.1% 0.3% 0.1% 0.0% 0.0%

TABLE III: Performance slowdown of GEMM on PIM-
optimized layout experimented on various prefill lengths

choose the worst-case slowdown for each device, 2.1%, 0.1%,
1.1%, and 1.6% for Jetson, Macbook, IdeaPad, and iPhone,
respectively, and scale its GEMM latency by these ratios for
all FACIL performance reports.
Baseline. We define a SoC-PIM hybrid baseline as a PIM-
enabled device without the features of FACIL. The baseline
holds a single copy of LLM weights, stored in a PIM-
optimized layout. The baseline offloads the prefill phase (i.e.,
GEMM) to the SoC processor and the decode phase (i.e.,
GEMV) to PIM. Transitioning from the PIM-optimized layout
to conventional layout incurs a re-layout cost. The latency of
the SoC-PIM hybrid baseline is computed as the sum of 1)
GEMM time measured on the real device, 2) GEMV time
simulated on the PIM simulator, and 3) re-layout time simu-
lated on the DRAM simulator. We estimate the re-layout cost
using DRAMSim [49], modeling only the memory access time
required to read data stored in one layout and write it into an-
other layout. For the DRAM address mapping of the SoC, we
assume a typical mapping of row:rank:column:bank:channel,
which we verify achieves near-peak sequential read bandwidth.
Note that this estimation is conservative in two aspects. First,
the re-layout cost only considers the memory copy overhead,
excluding the overhead of rearranging data ordering within
each page. Second, we assume that full memory bandwidth is
available, while in reality, some bandwidth may be utilized by
other processes.

B. Evaluation on a Single Query

TTFT. Figure 13 shows the time-to-first-token (TTFT) im-
provement of a single query on varying prefill lengths, com-
pared to the SoC-PIM hybrid baseline. FACIL achieves a
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Fig. 13: TTFT speedup of FACIL over the SoC-PIM hybrid
baseline with varying prefill length

geomean speedup of 2.89×, 2.19×, 1.55×, and 2.36× at
Jetson, Macbook, IdeaPad, and iPhone respectively, across
different prefill lengths. The TTFT speedup is inversely pro-
portional to the prefill length since the longer a prefill takes,
the more the re-layout cost becomes amortized. Meanwhile,
the degree of how fast the speedup diminishes as the prefill
length increases differs among devices. This difference stems
from the arithmetic intensity (i.e., FLOP/byte) of the ridge
points of each device in the roofline model [83], the minimum
arithmetic intensity required to achieve the peak FLOPS (i.e.,
Peak FLOPS/Peak Bandwidth). While the arithmetic intensity
of GEMM increases as the prefill length increases, its latency
sublinearly increases until its arithmetic intensity hits the
arithmetic intensity of the ridge point. Thus, the higher the
arithmetic intensity of the ridge point is, the slower the TTFT
speedup diminishes. The ridge point arithmetic intensity of
Macbook (i.e., 69.3) and iPhone (i.e., 83.8) are lower than that
of Jetson (i.e., 207.5) and IdeaPad (i.e., 93.8), thus showing
faster diminishment of speedup, as depicted in Figure 13.
TTLT. Figure 14 depicts the time-to-last-token (TTLT) im-
provement of a single query inference across varying combina-
tions of prefill and decode lengths compared to the SoC-PIM
hybrid baseline. Unlike TTFT, which depends solely on the
prefill phase, TTLT is heavily influenced by the decode length
due to its auto-regressive property. While the TTLT speedup of
FACIL is largely amortized during long decode phases, FACIL
still achieves significant speedup for decode lengths up to 64,
with an improvement of approximately 10%.
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Fig. 14: TTLT speedup of FACIL over the SoC-PIM hybrid baseline with varying prefill-to-decode ratio
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Fig. 15: Normalized TTFT speedup of FACIL on real-world datasets

C. Evaluation on Real-World Datasets

We evaluate our approach on two real-world datasets:
Alpaca [80] and RealHumanEval [55]. Alpaca is a dataset
composed of real-world inputs paired with output texts gener-
ated by GPT-3.5, which is representative of an LLM-based
virtual assistant. For code autocompletion, we utilize the
”autocompletion” subset of the RealHumanEval dataset, which
includes interaction logs between programmers and LLMs
with code autocompletion support. Both datasets represent key
applications of on-device LLMs where responsiveness is of
high significance. We randomly sample 1% and 10% of each
dataset, tokenize these samples, and use the resulting number
of tokens as input and output lengths for our experiments.

Since real-world datasets have varying prefill lengths, we
introduce a new optimization technique that allows the system
to offload the GEMM operations of the prefill phase to the
optimal hardware (i.e., SoC vs. PIM) based on the prefill
length. For example, when the prefill lengths are too small,
resulting in tall-and-skinny GEMM operations that are better
executed on PIM processors, we choose PIM processors for
execution. We profile the prefill execution time of SoC and
PIM beforehand to determine the threshold at which SoC
becomes faster than PIM. We henceforth denote this highly
optimized baseline as hybrid dynamic, and term the original

baseline, which performs every GEMM on SoC, as hybrid
static. Note that FACIL in Figure 15 and Figure 16 refers to
the version with this optimization applied.

The result shows that our scheme achieves a geomean
TTFT speedup of 2.37× and 2.63× for Alpaca and code
autocompletion dataset respectively, and a TTLT speedup of
1.20× for both datasets over the static baseline. While software
optimization itself offers non-negligible speedup compared to
the static baseline, our scheme still outperforms the dynamic
baseline by a large margin. We achieve slightly better TTFT
speedup compared to SoC-only inference because dataset
contains queries with small prefill length, in which PIM
outperforms the SoC processor. Note that while SoC-only
inference can provide fast TTFT, it greatly suffers in TTLT
because of its relative slowdown during the memory-bound
decode phase. In detail, FACIL achieves 3.55× and 3.58×
TTLT speedup compared to the SoC-only inference on Alpaca
and code autocompletion dataset, respectively.

FACIL performs best on Jetson among the four platforms,
while showing the least speedup on the IdeaPad. This can be
explained by memory bandwidth utilization of each platform.
We measured the memory bandwidth utilization of the GEMV
kernel on each platform by dividing the total memory access
by the GEMV execution time. Jetson, MacBook, and iPhone
all demonstrated high memory utilization (i.e. 76.3%, 88.3%,
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Fig. 16: Normalized TTLT speedup of FACIL on real-world datasets

74.6%), each surpassing 70% of their maximum memory
bandwidth. In contrast, the IdeaPad exhibited a notably low
memory bandwidth utilization of 33.3%. This relatively low
capability of the IdeaPad in utilizing memory bandwidth
slows down the prefill phase with skinny GEMM, which is
mostly memory-bound. Consequently, the portion of memory
re-layout cost in the total execution time decreases, leading to
reduced performance of FACIL in both TTFT and TTLT.

VII. RELATED WORK

PIM for LLM. Since the advent of taped-out near-bank
DRAM PIMs [15], [21], [42], [46], demonstrating its potential
of accelerating memory-bound kernels mainly composed of
GEMV operations, numerous works have proposed PIM-
augmented accelerators to improve the performance of LLM
inference [12], [28], [40], [41], [65], [74]. While these works
target server-scale LLM inference and typically design a dis-
crete accelerator where PIM is tightly coupled from the design
stage, we instead focus on the on-device LLM inference for
edge devices, tackling the challenge of efficient data sharing
between the existent SoC processor and PIM. We highlight
the difference of FACIL with IANUS [74] and NeuPIMs [28]
that stems from the difference in the target platform (i.e.,
server vs. edge). First, while IANUS proposes a global DRAM
address mapping scheme for the NPU-PIM accelerator, FACIL
leaves the mapping for non-PIM data intact, only modifying
the mapping for the SoC-PIM shared data. Second, while
NeuPIMs focuses on the parallel execution of GEMM and
GEMV operations to serve batched inference, FACIL targets
single-batch inference, where GEMM and GEMV are per-
formed in discrete phases. For SoC-based platforms, the major
challenge of PIM lies in preserving programmer transparency
while achieving the PIM-optimized data placement.
Integration of PIM. There are two main ways of integrating
PIM into an existing device. The first is to reserve a certain
number of ranks or banks exclusively for PIM, an approach
adopted by MI100-PIM [40] and Chopim [11]. While this ap-
proach saves the burden of handling the interleaving of DRAM
accesses issued by the SoC and PIM processors, allocating
distinct memory space for SoC and PIM in edge platforms

with limited resources is costly. The alternative is to integrate
PIM into the main memory system, the category Stepstone
PIM [10] falls into. The main distinction of FACIL from
Stepstone PIM is that the former locally modifies the DRAM
address mapping for the SoC-PIM shared matrices, while the
latter preserves the original DRAM address mapping. FACIL
trades in minimal modifications for optimal data placement
for PIM-offloaded GEMV operations, minimizing the cost of
inter-bank reduction.
Modification of DRAM Address Mapping. Several works
have proposed modification to the DRAM address map-
ping [20], [52], [86] to better utilize the parallelism provided
by the internal DRAM structure. DReAM [20] highlights that
different workloads exhibit varying memory access patterns,
necessitating distinct optimal address mappings. To identify
the best address mapping for each pattern, the paper suggested
real-time analysis of workload memory access patterns. It
also proposed working with the memory controller to regu-
larly update the address mapping table, leading to enhanced
performance. Liu et al. [52] developed a method to profile
memory address patterns after noticing distinct differences
between CPU and GPU access patterns. Their experimental
results demonstrated that adopting a mapping scheme opti-
mized for GPUs enhances both energy efficiency and overall
performance. Software-defined address mapping (SDAM) [86]
is a technique that shares the high-level idea of enabling
a user-level program to modify the PA-to-DA mapping at
certain granularity. SDAM modifies DRAM address mapping
to enhance channel parallelism in 3D memory. While it offers
a wide range of PA-to-DA mapping options, it necessitates
sophisticated additional hardware and significant operating
system modifications.

VIII. CONCLUSION

FACIL presents a solution to address the challenges of
SoC-PIM cooperative on-device LLM inference, particularly
for edge devices with limited memory capacity. By enabling
flexible DRAM address mapping, FACIL efficiently manages
the complex requirements of both PIM and SoC processors,
allowing for optimized data sharing and improved performance



in memory-intensive operations. The proposed system, com-
prising a specialized memory controller and user-level library,
demonstrates significant advancements in responsiveness and
inference latency across various real-world datasets and plat-
forms. As the demand for on-device LLM inference continues
to grow, driven by the need for enhanced user experience, pri-
vacy, and offline functionality, FACIL’s approach to seamlessly
integrating PIM technology with existing memory systems
could play a crucial role in future AI applications.
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