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Abstract—Transformer architecture is one of the most re-
markable recent breakthroughs in neural networks, achieving
state-of-the-art (SOTA) performance on various natural language
processing (NLP) and computer vision tasks. Self-attention is the
key enabling operation for transformer-based models. However,
its quadratic computational complexity to the sequence length
makes this operation the major performance bottleneck for
those models. Thus, we propose a novel self-attention accelerator
that skips most of the computation by utilizing an approximate
candidate selection algorithm. Implemented in a 40nm CMOS
technology, our 5.64 mm2 chip operates at 100-600 MHz con-
suming 48.3-685 mW to achieve the energy and area efficiency
of 0.354-5.61 TOPS/W and 239 GOPS/mm2, respectively.

I. INTRODUCTION

Since the advent of the transformer architecture [1], the self-
attention mechanism has become one of the most important
building blocks in neural networks (NN). From the representa-
tive NLP models such as BERT [2] and GPT-3 [3] to computer
vision [4] and even multi-modal models [5], the self-attention
mechanism has widely been adopted in various domains, and
its importance will continue to grow.

The self-attention mechanism is an operation that computes
the relations among input entities. Input entities may vary
depending on the context. For instance, an entity is a word
or token in NLP, while it may be an image patch in vision
classification. Fig. 1 is a visualization of one self-attention
operation within BERT [6]. The darker the connected line
is, the stronger the relationship between the two words is.
In the example, the adverb “where” strongly attends to “in”
and “Milan”, while the pronoun “it” attends to “conference”.

Convolutional and recurrent operations, which are the dom-
inant primitives for vision and NLP, respectively, only capture
the relationship among local, adjacent entities [7]. Thus,
they cannot directly compute the global dependencies. Self-
attention mechanism overcomes this limitation and directly
captures the long-range dependencies among distant entities.

Self-attention(Q,K, V ) = Softmax(
QKT

√
d

)V (1)

Equation (1) shows the formal definition of the self-attention
operation. It takes n×d query (Q), key (K), and value (V )
matrices as inputs, which are linear projections of the input
entities. n is the sequence length of the input entities whose
attention will be computed, and d is the dimension of projected
vectors for each entity. QKT is often divided by

√
d as a
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Fig. 1. Visualization of the self-attention mechanism using BERT [6]

scaling factor for stable gradients [1]. The softmax function
(σ(V )i =

eVi∑n
j=1 eVj

) returns a weight, which is then multiplied
by V to output a weighted sum of value vectors.

Although the self-attention operation is mainly composed
of matrix multiplications that benefit from the parallelism of
GPUs and NPUs, it is computationally expensive. The amount
of required computation quadratically increases as the length
of the input entities (i.e., n) increases, as the self-attention
mechanism has a complexity of O(n2d). This often limits
the maximum length of the input sequence to 512 or less for
BERT. Therefore, input sentences must be split into multiple
sub-sequences, preventing the model from capturing the global
relationship between input entities in different sub-sequences.

A recent study shows that the self-attention mechanism can
be approximated with negligible accuracy loss by estimating
the angular distance between a query-key vector pair based
on sign random projection (SRP) [8]. From the observation
that the softmax function maps most of the values to near-
zero except for a few large values, Ham et al. [8] proposes
an approximation algorithm that prunes most query-key pairs
that do not contribute to the final output.

We elaborate on this idea, presenting a 40nm implementa-
tion of a self-attention accelerator with SRP-based approxima-
tion. The implemented chip is fully integrated with a popular
NN framework for end-to-end inference of NLP models. Our
chip achieves a peak energy efficiency of 5.61 TOPS/W, 202×
higher than a high-performance GPU (NVIDIA GV100), and
the SOTA technology-normalized area efficiency.

The remaining paper is organized as follows. Section II
overviews the SRP-based approximation in [8], followed by
implementation details of the chip in Section III. Section IV
presents experimental results, and Section V concludes.
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Fig. 2. (a) Sign Random Projection (b) Computation steps of SRP

II. SIGN RANDOM PROJECTION-BASED APPROXIMATION

This section summarizes the approximation algorithm that
utilizes sign random projection (SRP) to estimate the dot-
product similarity [8]. The first stage of the self-attention
mechanism is the multiplication of query (Q) and transposed
key (KT ) matrix. This matrix multiplication computes the dot-
product similarity between each pair of d-dimensional query
vector (Qi) and key vector (Kj), where ith query/key vector
is a linear projection of the ith input entity. In other words,
QKT

(i,j) = Qi ·Kj .
The softmax function sharpens the difference between val-

ues to project most values to near-zero except for a few large
ones, which also make near-zero the multiplication of such val-
ues by the value matrix (V ) (i.e., Softmax(QKT )(i,j) ·V(j,d)),
to barely affect the final outcome. Based on this observation,
Ham et al. [8] proposes a method to identify and skip (Qi,
Kj) pairs whose softmax output will be near-zero, significantly
reducing the amount of computation without loss of accuracy.

Based on (Qi · Kj)/||Qi|| = ||Kj ||cosθ, the scheme ap-
proximates the magnitude of the dot-product similarity by
computing the norm of key vectors and the estimated angle in
advance. As illustrated in Fig. 2(a), SRP estimates the angle
between two vectors with the Hamming distance between
hashed bit-vectors. Binary hashing is performed using the
relative location against each hyperplane (pi). Fig. 2(b) shows
how SRP is computed. Each input vector is first multiplied
with a d×h hash matrix (H), where each column vector
corresponds to a different hyperplane. The output is then
transformed into a h-bit vector based on the sign of each value.
The Hamming distance of two bit-vectors estimates the angle.

Using the estimated angle, The query-normalized similarity
(||Kj ||cosθ) can be estimated, which is then compared against
the product of max

1≤j≤n
||Kj || and pre-trained cosine threshold

cosθt. Query-key vector pairs whose estimated similarity is
below this threshold are skipped. cos θt is computed for each
value of the configurable hyperparameter p using the training
dataset. p controls the degree of approximation, with a higher
value resulting in a more aggressive approximation. For each
p, we find cos θt that selects query-key pairs whose softmax
output is greater than p/n. We discuss how the choice of p
affects the accuracy and latency in Section IV.
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Fig. 3. Architecture of the self-attention accelerator
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III. IMPLEMENTATION DETAILS

A. Overview
Fig. 3 depicts the overall architecture of the implemented

accelerator. It consists of one preprocess module, four par-
allel candidate selection modules, one attention computation
module, and a controller in charge of state transition and off-
chip communication. We envision our design to be integrated
into existing processors (e.g., GPU or NPU) such that the
accelerator can directly access the input matrices from the
device’s scratchpad memory. However, for validation and
measurement of our accelerator, the prototype chip includes
192 KB SRAM for input and output matrices.
Execution Flow. The execution flow is depicted in Fig. 4.
During the preprocess phase, the hash and the norm of key
vectors are computed by the preprocess module. During the
execution phase, the same module computes the hash of each
query vector. Candidate selection modules consume the query
hash and the preprocessed values to deliver the indices of
selected query-key pairs (e.g., (Q0,K2), (Q0,K3) in Fig. 4)
to the attention computation module, which in turn performs
the self-attention operation in a pipelined manner.
Number Representations. The proposed accelerator uses
INT12 and custom FP17 with a 6-bit mantissa. For dot-
product similarity, INT12 is precise enough to prevent the
loss of end-to-end accuracy of the model. For exponent and
its multiplication with the value matrix, custom FP17 with
10-bit exponent and 6-bit mantissa is used. This prevents the
overflow of the softmax output’s denominator (i.e.,

∑n
j=1 e

Vj )
and allows us to decompose the softmax function into the
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Fig. 5. Chip layout (left) and micrograph (right)

accumulation stage and division stage, hiding the computation
bottleneck of exponent accumulation required before division.
B. Hardware Details
Preprocess Module. For each input vector, the preprocess
module computes its h-bit hash value using SRP. We choose
h=d=64 for our implementation. Naı̈vely multiplying a d×h
matrix incurs too much overhead for preprocessing. Instead,
we use the algorithm in [8] to decompose one large matrix
multiplication into three smaller multiplications. In h=d=64,
this reduces the required number of multiply-and-accumulate
(MAC) operations per hashing from 642=4096 to 3·44=768.

During the preprocess phase, the module also computes the
L2 norm of each key vector, keeping track of the maximum
key norm. As mentioned in Section II, the maximum key norm
is multiplied by a pre-trained cosine threshold to generate
a similarity threshold. Norm is computed by taking the dot
product of the input vector itself and taking the square root
of the product. Since the attention computation module is idle
during this phase, the preprocess module “borrows” its dot-
product unit, maximizing resource utilization.
Candidate Selection Module. Four candidate selection mod-
ules operate in parallel during the execution phase. Query
hash is passed from the preprocess module, and the key
hashes are retrieved from the hash memory. The module first
computes the Hamming distance between the query and key
hashes. A lookup table maps the result to the corresponding
cosine value, which is multiplied by the key norm to compute
query-normalized similarity. Finally, the module compares the
similarity against the threshold and passes the indices of
selected query-key pairs to the attention computation module.
Attention Computation Module. Attention computation
module is composed of a dot-product unit and a weighted
average sub-module. The former computes the dot product
of query-key vector pairs selected by candidate selection
modules. The latter consists of an exponent, a vectorized
MAC, and an output division unit. These units are pipelined
to compute the weighted sum of value vectors. First, the
exponent unit returns the exponent of the dot product (eDi ),
internally accumulating each exponent. Second, the vectorized
MAC unit multiplies the exponent with the value vector,
then accumulates the output. Once accumulation for a single
query vector is complete, the output division unit divides the
accumulated vector with the sum of exponents (

∑
eDi ). As

shown in Fig. 4, performing division at the end of the pipeline
prevents unnecessary stalls waiting for the sum of exponents.
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IV. MEASUREMENT RESULTS

The prototype chip shown in Fig. 5 is fabricated in 40nm
CMOS technology with an area of 5.64 mm2. As shown in
Fig. 6, the chip operates at a maximum frequency of 600 MHz
with 1.126 V.
Methodology. We measure the performance of the chip on
BERT-large model [2] using Stanford Question Answering
Dataset (SQuAD 2.0) [9]. To compare the performance with
existing processors, we run the same workload on NVIDIA
GV100 GPU [10], Jetson TX2 GPU [11], and Google TPUv3
[12]. The performance of these processors is measured using
FP16/BF16, advantageous for them compared to using FP32.

We develop an evaluation environment that allows the end-
to-end inference of BERT on the existing ML framework
(PyTorch) with offloading of the self-attention mechanism to
the chip. Fig. 7 depicts the details of the offloading mechanism.
During inference, the self-attention operations are exported to
the C++ offloader, which exposes an API for the end-user. The
offloader forwards the input matrices to the PCIe-connected
FPGA, which relays them to the chip. Once the chip completes
the computation, the FPGA receives the output matrix from
the chip, relaying it back to the offloader.
Performance. The chip achieves peak energy and area effi-
ciency of 5.61 TOPS/W and 239 GOPS/mm2 as shown in
Table I. The chip is up to 92.5× more energy-efficient than
TPUv3, which has the highest TOPS/W among the three.
Fig. 8 shows the effect of approximation on performance and
accuracy. As the degree of approximation increases, the chip
aggressively skips more query-key vector pairs, directly lead-
ing to throughput improvement. Moderate approximation of
p=2 achieves 3.4× speedup over no approximation (p=0), with
negligible (sub-1%) accuracy loss compared to the baseline
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DMA Driver

Controller
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Add & Norm
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def forward(Q, K, V): 
Score = matmul(Q, K.transpose)
Score = Score / sqrt(d)
Score = softmax(Score)
Output = matmul(Score, V)
return Output

Chip
Multi-Head
Self-Attention

Fig. 7. End-to-end inference system based on PyTorch



TABLE I. COMPARISON TABLE

GV100 GPU [10] Jetson TX2 GPU [11] TPU v3 (v3-8) [12] ISSCC 2022 [13] a) This Work
Technology (nm) 12 16 16 28 40
Die Area (mm2) 815 31.4b) 700 6.82 5.64

Frequency (MHz) 1627 1300 940 50 - 510 100 - 600
Power (W) 250 8.69 1800 0.012 - 0.273 0.0483 - 0.685

ML Algorithm BERT-large BERT-large BERT-large GPT-2, ViT,
Swin-Transformer BERT-large

ML Dataset SQuAD 2.0 SQuAD 2.0 SQuAD 2.0 wikiText-2, ImageNet SQuAD 2.0
Peak Performance

(TFLOPS, TOPS)
6.95 0.14 109 1.92c) 1.35d)

Energy Efficiency
(TFLOPS/W, TOPS/W)

0.0278
(0.00250)e)

0.0163
(0.00260)e)

0.0607
(0.00971)e)

2.60 - 17.2c)

(1.27 - 8.41c))e) 0.354 - 5.61d)

Area Efficiency
(GFLOPS/mm2, GOPS/mm2)

8.53
(0.768)e)

4.50
(0.720)e)

156
(25.0)e)

282c)

(138c))e) 239d)

a) The effect of computations outside the self-attention layers are excluded as explained in Section IV          b) Die area is approximated with the number of shader cores
c) 90% output sparsity          d) 88% output sparsity          e) Assumes 40nm implementation and energy is proportional to (Technology)2 [14]
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Fig. 8. Effect of approximation on performance and accuracy

accuracy of GPU using FP32 (0.838 in Fig. 8). If further
accuracy loss can be traded in for increased performance, a
more aggressive approximation (p=5) can lead to over 5.5×
speedup at the cost of a small (some 2%) accuracy loss.
Comparison with transformer accelerator by Wang et al.
[13]. Table I compares our prototype chip with a recently
proposed transformer accelerator [13]. For fair comparison,
dense feed-forward layers are removed as they are out of scope
of our design and also lower the transformer accelerator’s
TOPS and TOPS/W. Peak TOPS and TOPS/W are measured
at 88% output sparsity (p=5) for our chip and 90% for the
accelerator by Wang et al. In contrast, minimum TOPS and
TOPS/W are measured with no approximation in both cases.

Our chip results in 0.354-5.61 TOPS/W, 239 GOPS/mm2.
By comparison, the transformer accelerator achieved 1.27-
8.41 TOPS/W, 138 GOPS/mm2 on average, after normalizing
the technology based on the simple scaling model presented
by Biswas and Chandrakasan [14], where both energy and
area are proportional to the square of technology. Our self-
attention accelerator achieves comparable energy efficiency
and higher area efficiency against the transformer accelerator
due to the absolute computation reduction of our candidate
selection mechanism.

V. CONCLUSION

This paper presents a self-attention accelerator with an
approximate candidate selection algorithm. This chip is fab-

ricated in 40nm CMOS with an area of 5.64 mm2. Our chip
selects query-key vector pairs that are estimated to be highly
related, skipping the computation for the non-selected pairs.
Thanks to the efficient candidate selection algorithm, the chip
achieves 92.5× higher peak TOPS/W than TPUv3 and 1.73×
higher technology-normalized area efficiency than the state-
of-the-art transformer accelerator.
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