ELSA: Hardware-Software Co-design for Efficient,
Lightweight Self-Attention Mechanism in Neural Networks

Tae Jun Ham*, Yejin Lee*, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun Jung, Jae W. Lee

Seoul National University

{taejunham, yejinlee, andyseo0247, soosungkim, hyunjichoi, miguel92, jaewlee}@snu.ac.kr

Abstract—The self-attention mechanism is rapidly emerging
as one of the most important key primitives in neural net-
works (NNs) for its ability to identify the relations within
input entities. The self-attention-oriented NN models such as
Google Transformer and its variants have established the state-
of-the-art on a very wide range of natural language processing
tasks, and many other self-attention-oriented models are achiev-
ing competitive results in computer vision and recommender
systems as well. Unfortunately, despite its great benefits, the
self-attention mechanism is an expensive operation whose cost
increases quadratically with the number of input entities that
it processes, and thus accounts for a significant portion of the
inference runtime. Thus, this paper presents ELSA (Efficient,
Lightweight Self-Attention), a hardware-software co-designed
solution to substantially reduce the runtime as well as energy
spent on the self-attention mechanism. Specifically, based on
the intuition that not all relations are equal, we devise a novel
approximation scheme that significantly reduces the amount of
computation by efficiently filtering out relations that are unlikely
to affect the final output. With the specialized hardware for this
approximate self-attention mechanism, ELSA achieves a geomean
speedup of 58.1x as well as over three orders of magnitude
improvements in energy efficiency compared to GPU on self-
attention computation in modern NN models while maintaining
less than 1% loss in the accuracy metric.

Index Terms—attention, hardware accelerator, neural network

I. INTRODUCTION

The attention mechanism is a relatively recently introduced
neural network primitive emerging as one of the most influential
ideas in the deep learning community. This mechanism allows
neural networks (NNs) to identify the information relevant to
the specific input and decide where to attend. For example,
this mechanism can be used to identify the portion of the
information that is relevant to the query from an extensive
collection of data (e.g., knowledgebase, image). One specific
case of the attention mechanism is the self-attention mecha-
nism, where the attention mechanism is used to identify the
relations among input data. Since its first introduction in the
seminal paper Attention Is All You Need [82] that presents
the Transformer NN architecture, the self-attention mechanism
has been widely used to lead the breakthroughs in the field of
natural language processing (NLP). Self-attention-oriented NLP
models from major Al companies such as Google BERT [18],
Facebook RoBERTa [52], OpenAl GPT2/3 [5], [64], NVIDIA
MegatronL.M [71], and Microsoft Turing-NLG [70] established

* These authors contributed equally to this work.

the state-of-the-art results for various NLP tasks. In addition to

natural language processing, the self-attention is widely used

for computer vision [3], [15], [61], [91] and recommendation
systems [20], [43], [73], [78], [94], [95] as well.

Despite its strong potential, the self-attention is a costly
operation. This operation identifies the relations among input
data, and thus it requires the amount of computation that
quadratically increases with the number of entities involved in
this operation. Due to this high cost, the self-attention accounts
for a substantial amount of time and energy consumption in
many self-attention-oriented NN models, which becomes a
limiting factor for deployment. For example, many existing
NLP models such as Google BERT limit the self-attention
to be applied for up to 512 tokens (e.g., words) to avoid the
excessive performance and energy overhead. When the input
text has more than 512 tokens, the input text needs to be
divided into multiple segments (each with up to 512 tokens),
and the self-attention is separately applied for each segment.
Unfortunately, such a scheme makes NLP models unable to
capture the relation between two tokens that do not belong to
the same segment.

Thus, we present a hardware-software co-designed solution
for efficient, lightweight self-attention, called ELSA. Like other
hardware accelerators, ELSA exploits hardware specialization
to improve the performance and energy efficiency over the
conventional hardware like GPU. However, rather than merely
porting a provided algorithm to the hardware, our work takes
a step further and proposes a novel approximate self-attention
scheme as well as a specialized hardware architecture for
it. Based on the intuition that irrelevant relations can be
effectively filtered out by computing approximate similarity,
ELSA substantially reduces computational waste in a self-
attention operation. Unlike conventional hardware such as
GPUs, which fails to benefit from the proposed approximation,
our specialized hardware directly translates this reduction
to further improve performance and energy efficiency. This
reduced cost of self-attention enables us to apply the self-
attention to larger data, which can uncover distant relations
within the data that today’s models cannot handle effectively.
In summary, our work makes the following contributions:

« We present a novel approximate self-attention scheme which
exploits approximate, hardware-friendly similarity computa-
tion to substantially reduce the amount of computation in
the self-attention operation during inference.

o We design ELSA, a specialized hardware accelerator that

Query Matrix Q Key Matrix KT Score Matrix S

11 q12 G1a ki1 kip - kinq @ Similarity S11 S12 *** Sin
G21 G2z Gaa || ka1 kzz -+ kon | Computation | 'Sa1 Sza ** San
Sij = imKmj
dn1 9n2 " 9nd ka1 kaz -+ kan 1°U L Qim ™M™ L Sp1 Sn2 " Snn 4
C , (3] -
@ Softmax [S11 S12 ** Sin[V11 V12 " V1a Weighted [911 012 014
B . I I I
Normalization| Sz1 S22 *** Sop || V21 V22 *** Vaa Sum 021 O3 *** O3g
, el ’ ro ! 0jj = ' ’
Sy =3 gsim -Sn1 Snz " Snn VUni Vn2 *** Una Yo St V) Opn1 Onz *** Opg -

Normalized Score §' Value Matrix V Output Matrix O

Fig. 1. Self-attention mechanism.

exploits opportunities for approximation and parallelism
in the self-attention operation to significantly improve its
performance and energy efficiency.

« We evaluate ELSA with multiple representative self-atten
tion-oriented neural network models to demonstrate that our
accelerator can achieve substantial performance and energy
efficiency gains over the conventional hardware.

II. BACKGROUND AND MOTIVATION
A. Self-Attention Mechanism

Computation. Self-attention is essentially an operation that
identifies the relations within the input entities, and Fig. 1
presents the required computations for it. For each input entity,
three different d-dimensional dense vector representations need
to be provided: query, key, and value. Assuming the input has
n entities, n vectors of d dimension are grouped to form the
query matrix (Q), the key matrix (K), and the value matrix
(V) each having n x d dimensions. Throughout the paper,
we call row vectors of these matrices as queries, keys, and
values, respectively. @ The very first step of the self-attention
is similarity computation, which computes the dot product
similarity between each query vector and each key vector. For
this purpose, the query matrix is multiplied with the transposed
key matrix (QK™). This results in n x n matrix (i.e., attention
score matrix S), where s;; represents the similarity (i.e., dot
product) between the ith query and the jth key vector. Note that
some implementations often called scaled self-attention divide
the resulting matrix by a scalar constant. @ The second step is
the softmax normalization for each row of the attention score
matrix (s;; =%/ e*m). @ The final step computes the
output of this operation for each query vector by computing
the weighted sum of value matrix (V) rows utilizing the
corresponding normalized attention scores as weights. This
is equivalent to multiplying the matrix S’ to V (because
I'OWi(O) = Z;Lz:l S;m -IOWm(V) < 0ij = Z;Lz:l S;m) Umj)'
The result of this is an output matrix (O) where ith row
represents the d-dimensional vector that represents the outcome
of the self-attention operation for the ¢th input entity.

Application-Level Description. Each input entity (e.g., a word
in a text) gets three different vector representations (query, key,
and value). Then, each entity uses its query representation
to find the set of other entities that are the most relevant to
the current entity. For this purpose, the dot product similarity
between the query representation (of the current entity) and the
key representation of other entities are computed, then softmax-
normalized. Since the softmax function is a differentiable

Il Self-Attention 1 Others

m
Not Applicable

0 Default Max Input Length (n) ~ Larger Input Length (n'=4n) Reduced FFN Dimension (with n')
(BERT, RoBERTa, ALBERT, SASRec, BERT4Rec) for each group

Fig. 2. Portion of the runtime spent for the self-attention mechanism.

approximation of the argmax function, this step is effectively
selecting a few most similar entities to the current entity. Finally,
the value representations of the selected entries are summed up
utilizing the softmax-normalized attention score as the weights.
This process is repeated for each input entity, and the output
is passed to the next layer in a NN model. In NLP models,
this operation is used to identify the specific semantic relation
between tokens (e.g., words). For example, a self-attention
head (i.e., sub-layer) in a layer lets the direct objects to attend
their verbs, or noun modifiers to attend their nouns [14].

B. Cost of Self-Attention Mechanism

As explained before, the self-attention mechanism consists
of three steps. The first matrix multiplication requires n?d
multiply-and-accumulate (MAC) operations (since it multiplies
n X d matrix with d x n matrix). The second softmax
operation requires n? exponent operations, and the final matrix
multiplication also requires n?d MAC operations (n X n matrix
is multiplied with n x d).

Fig. 2 shows the portion of the runtime spent on self-attention
in popular NN models. We run SQuADvl1.1 dataset [68] for
NLP models (BERT, RoBERTa, ALBERT) and MovieLens-
1M [33] for recommendation models (SASRec, BERT4Rec)
on NVIDIA V100 GPU [56]. The details of each workload are
available in Section V-A. The left side of the figure shows that
the self-attention accounts for a significant portion (about 38%)
of the runtime across many existing self-attention-oriented NN
models. Furthermore, the figure also shows that increasing n
further than the published model parameter, say, by 4 x, makes
the self-attention to account for the even larger portion (about
64%) of the model runtime. Finally, note that several recent
research works on NLP models suggest that the portion of the
self-attention is going to increase even further. For example, a
recent research [88] demonstrates that extraneous dimensions
in the feedforward layers are unnecessary and removing them
hardly affects the model accuracy while significantly reducing
the runtime of the feedforward layers in Transformer-style
models. The right side of the figure shows that the runtime
portion of the self-attention on these models reach about 73%
when the feedforward layer dimension is reduced by 4x [88].
In addition, several recent proposals also investigate the idea
of replacing the feedforward layer in Transformer-style models
with the self-attention [48], [76]) for better model accuracy.
Such trends will make the self-attention to take an even larger
portion of the total model runtime in the future.

C. Opportunities for Approximation

All three input matrices (Q, K, V) of the self-attention
are dense. In other words, they mostly consist of nonzero

9173

VU3

. 1
Qv OV h(x,) - [0110] exl‘xzz’_;.mg(?ng)jﬂ
’ c o, i .
> .xz, h(x,)-[1110] exz,xsz;.mg(aaag):n
+F Qs
3
h(x3) - [0001] By x,~ T—I:hwmmng(g??a): ki

Fig. 3. Visualization of sign random projection (SRP)

elements. However, not all elements of these matrices contribute
equally to the output. This is because the softmax operation
maps most of the values in the attention score matrix (S) to
zeros or near-zero values except for the few largest values
of the row. It effectively makes S’ a sparse matrix with
many near-zero values, and hence the final matrix S’V as
well. Simply performing the sparse matrix multiplication for
the second matrix multiplication (S"V) does not completely
mitigate the high cost of the self-attention, since the first matrix
multiplication QK7 still requires n2d multiplications. To fully
exploit the approximation potential in the self-attention, there
should be a way to identify the set of keys (for each query)
that will result in large attention scores, without performing
expensive n2d multiplications.

Our intuition is that it is possible to achieve this by perform-
ing an approximate and lightweight similarity computation.
Instead of performing d multiplications and the softmax
operation to identify whether the ith query and the jth key
will be relevant or not (i.e., if s;j will be near-zero or not),
an approximate similarity can be computed to quickly filter
out a key that is expected to be not very relevant to the query.
If this approximate similarity computation indicates that they
are potentially relevant, the exact dot product similarity is
computed. If not, this similarity computation and all subsequent
computations can be skipped. With this scheme, it is possible
to eliminate a large amount of computational waste, and
our specialized hardware can translate this reduction into
performance improvement as well as energy savings.

III. APPROXIMATE SELF-ATTENTION
A. Overview

Our approximate self-attention scheme consists of three
sub-operations. First, we estimate the angle between two
vectors (e.g., a key and a query) with minimal computation
by utilizing the concise representations (e.g., k-bits hash,
also called binary embedding) of the key and the query
(Section III-B, Section III-C). Second, an estimated angle is
utilized to compute the approximate similarity between a query
and a key (Section III-D), based on the intuition that dot product
is directly proportional to the cosine of the angle between two
vectors. Finally, the approximate similarity is compared with a
certain threshold (Section III-E) to identify whether a specific
key is relevant to the query or not.

B. Binary Hashing for Angular Distance

Sign Random Projection. Sign random projection (SRP) [7]
is a well-known technique that effectively maps each input
vector to a binary hash vector in a way that allows the original
angular distance between two vectors to be efficiently estimated

with the two corresponding binary hash vectors. This mapping
is often utilized for the locality-sensitive hashing schemes, but
our work focuses on its use as an efficient estimator for the
angular distance.

For this process, a random d-dimensional vector v is
initialized by setting each of its component to a value sampled
from normal distribution N (0, 1). Then, for an input vector z,
the hash bit value of 1 is assigned if v -z > 0 and assigned 0
otherwise. This is repeated for k£ times with k random vectors
v1, ... to construct k-bits binary hash h(z) for the input
vector x. Formally, the hash function is defined as follows.

h(z) = (hyp1(x), hpa(), ...hyr(z)) Where h,(x) = sign(v-x)

Here, sign(z) is a function whose value is 1 if z > 0 and
0 otherwise. It is proven that the Hamming distance between
hashes of the vector z and y (i.e., hamming(h(z), h(y))) is
an unbiased estimator of their angular distance [7]. Intuitively,
if two vectors are on the same side for many of the random
hyperplanes each defined by one of k random vectors vy, ...v,
they are more likely to have a smaller angle. For example,
Fig. 3 shows that x; and x, is on the same side of three
random hyperplanes out of four, and thus have a small hamming
distance as well as angular distance. The following equation
is used to estimate the angle between vector and y [7].

Oy y ~ % - hamming(h(z), h(y))

Our work, in fact, employs the slight variant of SRP that
utilizes the & orthogonal vectors generated with the modified
Gram-Schmidt Process [86]. Utilizing the orthogonal vectors
prevents two or more random vectors from pointing to a similar
direction, which leads to the unnecessary emphasis on that
specific direction. This method is proven to reduce the error
of the angular distance approximation [40].

Angle Correction. The estimated angle computed from the
hamming distance is not biased, but still has errors. For
this reason, if we simply utilize this estimator without any
correction, the estimated angles will be larger than the true
angle in about half of the cases. Since overestimating the
angle (i.e., underestimating the similarity between two vectors)
can result in our scheme to miss the keys that have relations
with the query, we subtract the bias 6;,s to this estimator.
Specifically, we set ;45 to be the 80th percentile error of this
estimator so that subtracting this bias from the angle makes
this estimator underestimate angles in 80% of the cases. The
80th percentile error is obtained by experiments on a synthetic
dataset with standard random normal vectors. For a specific
case d = 64 and k = 64, 0y;,, is 0.127.

C. Efficient Hash Computation

Cost of Hash Computation. To obtain the k-bits hash value
for a d-dimensional vector x, a k X d orthogonal matrix (i.e.,
a matrix whose row vectors are unit vectors orthogonal to
each other) is multiplied to =, and then each element is
assigned a hash bit (i.e., 1 if it is positive; O if not). With
this scheme, computing the hash values for n vectors requires

ndk multiplications (as well as n(d — 1)k additions), and since
our scheme requires computing hashes for all queries and
keys, the total number of multiplications required for hash
computation is 2ndk. This cost is negligible compared to 2n%d
(cost of dot product similarity computation and value matrix
computation) when n > k. However, at least for current neural
networks with the limited n (e.g., 128 for small models), this
is not always the case. To minimize the amount of computation
for hash computation, our work exploits Kronecker product,
a technique to efficiently compute the matrix multiplication
using orthogonal matrices [22], [93].

Kronecker Product. The key intuition of our approach is
that we can utilize a structured orthogonal matrix for hash
computation. Specifically, we utilize an orthogonal matrix
which can be computed by the Kronecker product of smaller
matrices. A Kronecker product of a m x n matrix A and p X ¢q
matrix B produces the pm X gn matrix as shown below.

a1 B a1, B

Kronecker Product: A ® B =
am'lB am'nB
It is well known that Kronecker product of orthogonal
matrices results in an orthogonal matrix. Thus, it is possible to
obtain the k£ x d orthogonal matrix through Kronecker products
of smaller orthogonal matrices. This characteristic allows us to
utilize the technique [22], [93] to efficiently compute the hash
value of the vector z, which is obtained by computing Azx.

Ar = (A; ® Ay)x = (Ajx.reshape(8,8) AL). reshape(64)

Efficient Computation with Kronecker Product. Fig. 5
visualizes an example case of computing matrix Az with much
fewer computations for a 4 x4 matrix A, which is represented as
Kronecker product of two 2 x 2 matrices A; and A . Similarly,
the above equation shows the case for k = d = 64 where the
64 x 64 matrix A is represented as Kronecker product of two
matrices. Here, x.reshape(8,8) represents the operation of
reshaping 64-dimensional vector x to a 8 X 8 matrix by dividing
the vector by 8 slices and stacking them. With this technique,
the amount of multiplications involved in this operation is now
reduced to 1024 (i.e., 2d%/2) from 4096 (i.e., d?).

Ax = (A1 ® A2 ® Ag)t
= (Ay(z.reshape(4,4,4) AT)TO2DAT)T(02) reshape(64)

Similarly, the technique can be applied to obtain orthogonal
matrix A by computing Kronecker product of three smaller
4 x 4 matrices A1, Ay, Az using the above equation. Here,
T(0,2) means the tensor transpose which maps element with
index (i, 4, k) to (k, j, 7). With this scheme, three batched (with
batch size = 4) 4 x 4 multiplications are required to compute
Azx. In other words, this requires a total of twelve 4 x 4 matrix
multiplications which involves 768 (i.e., 3d*/) multiplications.
Note that the explained efficient computation mechanism also
works for cases where k # d or A is not a square matrix [93].

D. Approximate Self-attention Algorithm

Fig. 4 illustrates our approximate self-attention algorithm.
Below, we explain each sub-operation of the approximate self-
attention algorithm in detail.

Preprocessing. @ At the beginning, k-bits hash values for
keys (Section III-B) are computed with the efficient hash
computation scheme (Section III-C). At the same time, the norm
of each key is computed and stored as well. This preprocessing
requires 3nd*/3 multiplications for the hash computation and
nd multiplications as well as n square root computations for
the norm computation. Note that it is possible to compute query
hashes during this phase. However, for now, we assume that
the query hash is computed when that query is processed so
that it matches well with the hardware architecture explained
in the next section.

Approximate Similarity Computation. Once the preprocess-
ing ends, the approximate dot product similarity between
a query and each key needs to be computed to determine
whether they are relevant or not. For a query (Q,) and each
key (K, € {Ki,..K,}), the following computations are
performed. @ First, the query hash value h(Q,) is obtained
using the efficient computation scheme in Section III-C. @
Second, the Hamming distances between a query hash and
all keys are computed. @ Third, these Hamming distances
are translated to angles 0¢_ K, for all 1 < y < n using the
equation in Section III-B, and the 6y, is applied. @ Fourth,
the cosine function is applied to each of these approximate
angles, and then @ the corresponding key norm is multiplied
to each of them. Note that the resulting value is the estimate
of the dot product between the normalized query and the key,
which represents the (query-normalized) similarity of those
two vectors. The following equations illustrate this relation.

Sim(Qu/1Qxl, Ky) = (Qu/l1Qxl) - Ky = I 1y | cos(0q, x,)
~ |IK, | cos (max(O, % hamming(h(Qq), h(K,)) — abias))

@ Finally, once the above values are computed, we inspect
these values and compare them with a constant threshold
to determine whether these values are relevant to the query
or not. The method to determine this threshold is explained
in the next subsection. @ At this point, the candidates for
the current query have been selected, and the next query is
processed (starting from step @). Each approximate similarity
computation between a key and a query involves i) single
Hamming distance computation, ii) a multiplication (%) and
a subtraction (0y;4s), iii) a cosine function, iv) and another
multiplication (||, ||). This cost is substantially lower than
d multiplications required to compute the exact dot-product
similarity. Furthermore, Section IV-C shows we can avoid some
of these computations in hardware using a lookup table.

E. Candidate Selection Threshold

Motivation. There can be several different ways to filter out
irrelevant keys for a particular query based on the approximate
similarity. One possible way is to sort the score and select a
certain number of top-scoring elements. However, sorting has

%hamming(w)

cos(6g,, Ky) ||Ky ||cos (6q,, Ky)

~bias 0.92 0.61 . v
©OHamming |97 0 .o Orey 076 o *
Distance 0.92 |~ cosine orl 058 Candidate .

To Angle ’ 0.61 Multiplication . Selection
3.01 -0.99 -1.65 x

Key Matrlx K Key Hash _ hamming(h(Qx), h(Ky))
03 02 11 071 @Efficient T @compute
14 07 09 -08 Key Hash 0 1 Hamming
04 03 08 -02 (| computation | ! 1 Distance 1
Qx [09 05 01 -13 0 [A] 2
11 1
Pgss 09 08 12 -03 1.35 A 1
I
0.1 00 -01 07 1.97 e
Next OKey N OEfﬂCIent 3
Query 09 -04 02 0.1 c tati 0.96 Query Hash
01 -02 0.7 0.6 el 1.66 Computation
Query Matrix Q Key Norm

F i |

Fig. 4. Approximate Self-attention Algorithm

0.1
0.4

12 0.2 -0.7 0.8 0.2 -0.7
0.7 0.2 0.7 0.2

0.1] [os 0.2 -0.7 12|02 07 0.3 [0.25
([1.2 -o.s]®[o.z -o.7i|> 0a| [7%lo7 02] "“lo7 02] ||o2] |-002
08 1.2[~|07 0.2]/|03 A, @4, X |-0.30

4, 0. 21.42
1.2 -08]|,]0.1 04| |02 07 X
X X
T—»([o.s 1.2] [0.3 0.2] [0‘7 0.2])4—T
Aq X.reshape(2,2) AZT reshape(4)

Fig. 5. An example of efficient computation with Kronecker Product.

A4

LY

nlogn time complexity and is difficult to efficiently implement
in hardware, especially when n is large. For these reasons,
our work focuses on filtering out potentially irrelevant keys
by comparing those keys’ approximate (query-normalized)
similarities with a pre-defined threshold. One major issue is
that different layers and sub-layers utilizing the self-attention
often require different thresholds since each (sub-)layer often
exhibits a different distribution of attention scores. However,
it is impractical to leave these layer-specific threshold values
as user-defined hyperparameters, especially for models like
BERT-large which has 384 sub-layers utilizing the self-attention
mechanism. To avoid such an impracticality, we let a user
specify a single hyperparameter that represents the degree
of approximation, and present a scheme that automatically
finds the (sub-)layer-specific thresholds that correspond to the
user-specified degree of approximation.

Normalized Score Matrix §' Filtered S'

M Div. b
E) 48 0.06 0.30 0.16 0 Exclude ?cor‘“ ?Krlwvax\ly
Key 0 Key1 Key2 Key 3 keys with from and |[qll

e
:J‘ 0 SGJJUpdate t

Fig. 6. Process of identifying layer-specific thresholds.

|:135 072086 024

Score Matrix S

Filtered S

Learning Layer-Specific Thresholds. To find the layer-
specific threshold, our scheme runs target neural network model
inference on the training set and inspects the characteristics
of each layer utilizing the self-attention. Fig. 6 illustrates
this process. First, for each invocation of the self-attention
operation for a particular (sub-)layer, our scheme inspects the
softmax-normalized attention scores for each query. Then, @
we identify the set of keys whose softmax-normalized attention
score exceeds p - % where p is a user-specified hyperparameter,
and n is the number of input entities. Here, the hyperparameter
p represents the degree of approximation. For example, if p = 2
when n = 200, this means that the user considers entities
whose softmax-normalized score exceeding 0.01 to be relevant.
The selection of a larger p implies aggressive approximation,
and a smaller p means conservative approximation. @ Among

those keys, we focus on the key with the minimum softmax-
normalized attention score'. © Then, we normalize its original
attention score by dividing it with the query norm ||¢|| and
the maximum key norm || K,q.|| = mazx(||K1], ..., || Knl|)-
We denote the resulting value as the threshold ¢. This process
is repeated for multiple input data in training set to find the
average of this value for each (sub-)layer. During an actual
inference run, the threshold ¢ multiplied by the maximum key
norm (¢- || Kynaz||) is compared with the approximate similarity
(Section III-D) to determine whether a key (in the key matrix
K) is relevant to the current query. Specifically, the following
equation specifies the condition to determine if the computation
for the key K, can be skipped for the query Q.

t- HKmam” > HKyH - COoS <max(0, % - hamming(h(Qz), h(Ky)) — 9bias))

IV. ELSA HARDWARE ARCHITECTURE
A. Motivation

Hardware specialization is a well-known approach to im-
proving performance and energy efficiency of a specific type
of computation. Naturally, this idea can be applied to the self-
attention operation, which accounts for a substantial portion of
total execution time in many emerging NN models of today.
However, we also emphasize more important, often overlooked,
benefits of building specialized hardware—exposing unique
optimization opportunities for the specific operation that cannot
be exploited profitably by the conventional hardware.

We make this point with the proposed approximation
algorithm as an example. As explained in Section III-D, the key
idea of ELSA approximate attention is to avoid d-dimensional
dot product through a hamming distance computation between
binary embeddings, multiplication, and a cosine function.
Unfortunately, the conventional GPU is not suited for many
of these operations, and our internal experiments have found
that the approximation scheme results in a 3.14x slowdown
because simply performing d-dimensional dot product is
faster than performing the approximate similarity computation,
even with various manual/automated optimizations for CUDA
implementation (e.g., TorchScript Tracing [62]). We find that
the true benefits of the proposed approximation scheme can be
harnessed only by a specialized hardware that is co-designed
with this approximation algorithm. This is where a software-
hardware co-optimization uncovers the unique opportunity that
pure hardware or software-only optimizations fail to exploit.

INote that there exists a case where all softmax-normalized attention scores
are below p - 1/n (this can happen when p > 1). In such a case, we simply
take the maximum score among all keys.

Key from Query from Key from guery ’U‘om \YALLLAOQOM Output Mem
Key Mem Query Mem . . Key Mem. Query Mem. " alue Mem.
Y Hash - f Candidate Selection (P. modules) ~ CAtte”t'on ; Output Div-
Computation Query Hash — omputation
Buffer —— N | <l
Matrix Multiplication Unit ToT Q ID | [Vec
By N Key Hash ueue
(with my, multipliers) N . . . HE) .
Memory . . :
Norm Computation
—>
== oo |
Memory Queue
- 11 / Squared Weighted Sum and Acc,
| T t 1 T
| Trained t------- ! | Key 1 eyt
E > - Norm. | K:'; N‘\Sm l ---3 Preprocessing Phase EE Execution Phase l

Fig. 7. ELSA Pipeline Block Diagram

B. Hardware Overview

For the efficient processing of the self-attention operation,
we design a specialized hardware accelerator that exploits the
novel approximation scheme introduced in Section III. One
can view the ELSA accelerator as a specialized functional
unit for the self-attention mechanism, which can be integrated
with various computing devices such as CPUs, GPUs, and
other NN accelerators. The host device can issue a simple
command to initiate the ELSA accelerator and pass the inputs
(i.e., key/query/value matrix and n). When a device with
scratchpad memories such as GPUs or NN accelerators is used,
matrix inputs (and output buffer) can be passed by reference
so that the accelerator can directly read those inputs without
making another copy. Once inputs are ready, the accelerator
goes through the preprocessing/execution phase and then writes
the output matrix to the output memory and notifies the host.
Operation Overview. Fig. 7 shows the block diagram of
the ELSA accelerator pipeline, which also presents its high-
level dataflow. The ELSA accelerator takes a key matrix, a
query matrix, and a value matrix as inputs for self-attention to
generate the output matrix. As soon as inputs are ready, the
preprocessing phase begins. This phase computes k-bits hash
values of each row in the key matrix using a hash computation
module, and stores them in the key hash memory. Similarly, the
norm of each key vector is computed using a norm computation
module and stored in the key norm memory. Once this phase
ends, the execution phase begins where each row of the query
matrix is processed in sequence to output a single row of
the output matrix at a time. Specifically, for each query, P,
candidate selection modules retrieve P, keys’ hashes and norms
(along with the query hash) every cycle and outputs up to P,
selected candidate key IDs (i.e., row IDs) to each module’s
output queue. Then, these selected key IDs are arbitrated and
passed to the attention computation module, which computes
and accumulates the selected key’s contribution to the output
(for the current query) every cycle. Once all selected keys for
this particular query is computed, the output division module
performs the division on this output. This process is repeated
for each row of the query matrix (i.e., each query), and the
operation ends when the last query is processed.

C. Design of Hardware Modules

(1) Modules for Approximate Self-attention Computation

Candidate Selection Module. The candidate selection module
performs the approximate self-attention mechanism (Section III)

to identify the set of potentially relevant rows in the key matrix
(i.e., candidates), and then outputs the indices of such elements
to the attention computation module. Every cycle, this module
takes three inputs: i) k-bits hash value of a key from the
key hash memory and ii) the norm of this key from the key
norm memory, and iii) k-bits hash value of the current query
from the query hash buffer. Then, this module utilizes k-bits
XOR unit followed by an adder to compute the Hamming
distance between the key hash value and the query hash value.
The resulting Hamming distance value is then used as an
index to access the pre-populated lookup table, which stores
cos(7/k-diamming—Obias). Since the Hamming distance takes
an integer value between zero and k, this lookup table has &£+ 1
entries. Once this value is retrieved, it is multiplied with the
norm of the current key to compute the approximate similarity
(Section III-D). This value is compared with the product of
threshold ¢ (Section III-E) and the largest vector norm of the
key matrix (i.e., t - max(|| K1, ..., || Kx||)). If the approximate
similarity is greater than this value, the key in question is
selected as a potentially relevant key, and the index of this
key is then passed to this module’s output queue. Multiple
(i.e., P,) candidate selection modules process different keys in
parallel, and then their outputs are arbitrated and passed to the
attention computation module. The candidate selection module
is fully-pipelined and processes one key per cycle.

1 def attention_computation (float q[], float key[][],

2 float val[][], vector<int> candidates):

3 for keyid in candidates:

4 /* Dot-Productx/

5 parallel for i = 0 to d-1:

6 temp[i] = key[keyid][i] * q[i]
7
8

score = ParallelSum(temp)
/* Exponent Computation x/

9 score = exp(score)

10 sumexp += score

11 /* Weighted Sum x*/

12 parallel for i = 0 to d-1:

13 output[i] += score * vall[keyid][i]
14 def output_division (float output[], float sumexp):
15 reciprocal = 1/sumexp

16 /* Division */

17 for i = 0 to d/mo-1:

18 parallel for j = 0 to mo-1:

19 output[i * mo + j] *= reciprocal

Fig. 8. Pseudocode for Attention computation and output division modules.

Attention Computation Module. A single attention computa-
tion module is in charge of computing a single row of the final
output matrix, along with the output division module. Fig. 8
represents this module’s operation in pseudocode. Each cycle,
this module takes a key as an input from the arbiter with the
longest-queue-first scheduling policy. Then, it first computes

the dot product between a key (/) and a query ((),;) using its
d multipliers and an adder tree (Line 5-7 in Fig. 8). After that,
for the softmax normalization of the resulting attention score,
the exponent of this value is computed using a lookup table
(explained in Section IV-E). The resulting exponentiated value
is i) accumulated in the sum of exponent register (Line 10), and
ii) multiplied with all components of the corresponding value
matrix row using the other set of d multipliers and accumulated
with d adders (Line 12-13). This module is fully-pipelined
and can process a single candidate every cycle. Assuming c
candidates are selected for the query (), by the candidate
selection modules, this module can process them in about ¢
cycles. The resulting output vector and the sum of exponentiated
values are then passed to the output division module when it
finishes processing all selected keys for the current query.
Output Division Module. Once all (selected) keys are pro-
cessed, all components of the output vector needs to be
divided by the accumulated exponentiated score to complete
the softmax normalization. For this purpose, the hardware
first utilizes a reciprocal unit (explained in Section IV-E) to
compute the reciprocal of the sum of the exponentiated score
(Line 15), and then multiply each component of the output
vector with m,, multipliers (Line 18-19). Since this module is
fully-pipelined, it can handle a single query every d/m,, cycles.
Note that this module operates in parallel with the rest of the
pipeline (e.g., candidate selection and attention computation
modules). However, when other modules are processing the
ith query, this module is processing the (: — 1)th query.

(2) Modules for Key/Query Hash & Norm Computation

Hash Computation Module. This module is in charge of
computing hashes for the keys and the queries by performing
a series of matrix multiplications as described in Section III-C.
Specifically, if we assume the specific case presented in Sec-
tion III-C (i.e., utilizing three-way Kronecker products of 4 x 4
matrices for k = d = 64), the hash computation for a vector
requires a total of twelve (4 x 4, 4 x 4) matrix multiplications
(the last paragraph in Section III-C). Assuming m;, multipliers
for this unit, we carefully design the matrix multiplication
unit so that it fully utilizes all m; multipliers to perform
this operation and complete the hash computation in 768 /my,
(i.e., 3d4/3 /my,) cycles. For these matrix multiplications, this
module contains 48 (3d>/?) registers, where each register value
is an element of three pre-defined (4 x 4) matrices for the
hash computation (i.e., A7, A3, A3 in Section III-C). Once
the matrix multiplications are finished, the sign bits of each
component (a total of k-bits) are concatenated and stored in
the key hash memory. During the preprocessing phase, this
module computes all key hashes (768n/my, or 3nd*/3/my,
cycles) and the first query hash (extra 768/my, or 3d*/3 /my,
cycles). During the execution phase, this model computes the
hash value for the next query while the rest of the pipeline
(e.g., candidate selection and attention computation module) is
processing the current query.

Norm Computation Module. Norms of the keys are computed
during the preprocessing phase in addition to the hashes of

the keys. The euclidean (L2) norm of the key vector ||/, is
obtained by computing the dot product with itself (/- K,) and
then taking its square root. For this purpose, instead of having
its own set of multipliers, this unit utilizes the d multipliers
and the adder tree in the attention computation module (as
shown in Fig. 7). Then, this module utilizes its own square
root units (see Section I'V-E for details) to compute the final
result and store it in the key norm memory. In addition, this
module also identifies the maximum key norm and multiply
the trained ¢ by that value to compute the threshold that is
used for the candidate selection modules.

(3) Memory Modules

Key Hash/Norm Memory. These memory modules are imple-
mented as SRAM structures placed within the ELSA accelerator.
These structures are initialized during the preprocessing phase
and then utilized by the candidate selection module during the
execution phase. Key Hash SRAM requires a total of nk/8